192 research outputs found

    Pupil stabilization for SPHERE's extreme AO and high performance coronagraph system

    Full text link
    We propose a new concept of pupil motion sensor for astronomical adaptive optics systems and present experimental results obtained during the first laboratory validation of this concept. Pupil motion is an important issue in the case of extreme adaptive optics, high contrast systems, such as the proposed Planet Finder instruments for the ESO and Gemini 8-meter telescopes. Such high contrast imaging instruments will definitively require pupil stabilization to minimize the effect of quasi-static aberrations. The concept for pupil stabilization we propose uses the flux information from the AO system wave-front sensor to drive in closed loop a pupil tip-tilt mirror located in a focal plane. A laboratory experiment validates this concept and demonstrates its interest for high contrast imaging instrument.Comment: This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at http://www.opticsexpress.org/abstract.cfm?id=144687 on the OSA websit

    Design of light concentrators for Cherenkov telescope observatories

    Full text link
    The Cherenkov Telescope Array (CTA) will be the largest cosmic gamma ray detector ever built in the world. It will be installed at two different sites in the North and South hemispheres and should be operational for about 30 years. In order to cover the desired energy range, the CTA is composed of typically 50-100 collecting telescopes of various sizes (from 6 to 24-m diameters). Most of them are equipped with a focal plane camera consisting of 1500 to 2000 Photomultipliers (PM) equipped with light concentrating optics, whose double function is to maximize the amount of Cherenkov light detected by the photo-sensors, and to block any stray light originating from the terrestrial environment. Two different optical solutions have been designed, respectively based on a Compound Parabolic Concentrator (CPC), and on a purely dioptric concentrating lens. In this communication are described the technical specifications, optical designs and performance of the different solutions envisioned for all these light concentrators. The current status of their prototyping activities is also given

    Characterization of integrated optics components for the second generation of VLTI instruments

    Full text link
    Two of the three instruments proposed to ESO for the second generation instrumentation of the VLTI would use integrated optics for beam combination. Several design are studied, including co-axial and multi-axial recombination. An extensive quantity of combiners are therefore under test in our laboratories. We will present the various components, and the method used to validate and compare the different combiners. Finally, we will discuss the performances and their implication for both VSI and Gravity VLTI instruments.Comment: SPIE Astronomical Instrumentation 2008 in Marseille, France -- Equation (7) update

    ExTrA: Exoplanets in Transit and their Atmospheres

    Full text link
    The ExTrA facility, located at La Silla observatory, will consist of a near-infrared multi-object spectrograph fed by three 60-cm telescopes. ExTrA will add the spectroscopic resolution to the traditional differential photometry method. This shall enable the fine correction of color-dependent systematics that would otherwise hinder ground-based observations. With both this novel method and an infrared-enabled efficiency, ExTrA aims to find transiting telluric planets orbiting in the habitable zone of bright nearby M dwarfs. It shall have the versatility to do so by running its own independent survey and also by concurrently following-up on the space candidates unveiled by K2 and TESS. The exoplanets detected by ExTrA will be amenable to atmospheric characterisation with VLTs, JWST, and ELTs and could give our first peek into an exo-life laboratory.Comment: 15 pages, 11 figures, SPIE 201

    The FALCON concept: multi-object spectroscopy combined with MCAO in near-IR

    Get PDF
    A large fraction of the present-day stellar mass was formed between z=0.5 and z~3 and our understanding of the formation mechanisms at work at these epochs requires both high spatial and high spectral resolution: one shall simultaneously} obtain images of objects with typical sizes as small as 1-2kpc(~0''.1), while achieving 20-50 km/s (R >= 5000) spectral resolution. The obvious instrumental solution to adopt in order to tackle the science goal is therefore a combination of multi-object 3D spectrograph with multi-conjugate adaptive optics in large fields. A partial, but still competitive correction shall be prefered, over a much wider field of view. This can be done by estimating the turbulent volume from sets of natural guide stars, by optimizing the correction to several and discrete small areas of few arcsec2 selected in a large field (Nasmyth field of 25 arcmin) and by correcting up to the 6th, and eventually, up to the 60th Zernike modes. Simulations on real extragalactic fields, show that for most sources (>80%), the recovered resolution could reach 0".15-0".25 in the J and H bands. Detection of point-like objects is improved by factors from 3 to >10, when compared with an instrument without adaptive correction. The proposed instrument concept, FALCON, is equiped with deployable mini-integral field units (IFUs), achieving spectral resolutions between R=5000 and 20000. Its multiplex capability, combined with high spatial and spectral resolution characteristics, is a natural ground based complement to the next generation of space telescopes.Comment: ESO Workshop Proceedings: Scientific Drivers for ESO Future VLT/VLTI Instrumentation, 10 pages and 5 figure

    MYSTIC: Michigan Young STar Imager at CHARA

    Get PDF
    This is the final version of the article. Available from SPIE via the DOI in this record.We present the design for MYSTIC, the Michigan Young STar Imager at CHARA. MYSTIC will be a K-band, cryogenic, 6-beam combiner for the Georgia State University CHARA telescope array. The design follows the image-plane combination scheme of the MIRC instrument where single-mode fibers bring starlight into a non-redundant fringe pattern to feed a spectrograph. Beams will be injected in polarization-maintaining fibers outside the cryogenic dewar and then be transported through a vacuum feedthrough into the ~220K cold volume where combination is achieved and the light is dispersed. We will use a C-RED One camera (First Light Imaging) based on the eAPD SAPHIRA detector to allow for near-photon-counting performance. We also intend to support a 4-telescope mode using a leftover integrated optics component designed for the VLTI-GRAVITY experiment, allowing better sensitivity for the faintest targets. Our primary science driver motivation is to image disks around young stars in order to better understand planet formation and how forming planets might influence disk structures.MYSTIC is funded by the USA National Science Foundation (PI: Monnier, NSF-ATI 1506540) while the MIRC-X project is funded by the European Research Council (PI: Kraus, ERC, Grant # 639889)

    The Fringe Detection Laser Metrology for the GRAVITY Interferometer at the VLTI

    Full text link
    Interferometric measurements of optical path length differences of stars over large baselines can deliver extremely accurate astrometric data. The interferometer GRAVITY will simultaneously measure two objects in the field of view of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) and determine their angular separation to a precision of 10 micro arcseconds in only 5 minutes. To perform the astrometric measurement with such a high accuracy, the differential path length through the VLTI and the instrument has to be measured (and tracked since Earth's rotation will permanently change it) by a laser metrology to an even higher level of accuracy (corresponding to 1 nm in 3 minutes). Usually, heterodyne differential path techniques are used for nanometer precision measurements, but with these methods it is difficult to track the full beam size and to follow the light path up to the primary mirror of the telescope. Here, we present the preliminary design of a differential path metrology system, developed within the GRAVITY project. It measures the instrumental differential path over the full pupil size and up to the entrance pupil location. The differential phase is measured by detecting the laser fringe pattern both on the telescopes' secondary mirrors as well as after reflection at the primary mirror. Based on our proposed design we evaluate the phase measurement accuracy based on a full budget of possible statistical and systematic errors. We show that this metrology design fulfills the high precision requirement of GRAVITY.Comment: Proc. SPIE in pres

    Integrated optics for astronomical interferometry - VI. Coupling the light of the VLTI in K band

    Get PDF
    Our objective is to prove that integrated optics (IO) is not only a good concept for astronomical interferometry but also a working technique with high performance. We used the commissioning data obtained with the dedicated K-band integrated optics two-telescope beam combiner which now replaces the fiber coupler MONA in the VLTI/VINCI instrument. We characterize the behaviour of this IO device and compare its properties to other single mode beam combiner like the previously used MONA fiber coupler. The IO combiner provides a high optical throughput, a contrast of 89% with a night-to-night stability of a few percent. Even if a dispersive phase is present, we show that it does not bias the measured Fourier visibility estimate. An upper limit of 0.005 for the cross-talk between linear polarization states has been measured. We take advantage of the intrinsic contrast stability to test a new astronomical prodecure for calibrating diameters of simple stars by simultaneously fitting the instrumental contrast and the apparent stellar diameters. This method reaches an accuracy with diameter errors of the order of previous ones but without the need of an already known calibrator. These results are an important step of integrated optics and paves the road to incoming imaging interferometer projects

    Searching for faint companions with VLTI/PIONIER. I. Method and first results

    Get PDF
    Context. A new four-telescope interferometric instrument called PIONIER has recently been installed at VLTI. It provides improved imaging capabilities together with high precision. Aims. We search for low-mass companions around a few bright stars using different strategies, and determine the dynamic range currently reachable with PIONIER. Methods. Our method is based on the closure phase, which is the most robust interferometric quantity when searching for faint companions. We computed the chi^2 goodness of fit for a series of binary star models at different positions and with various flux ratios. The resulting chi^2 cube was used to identify the best-fit binary model and evaluate its significance, or to determine upper limits on the companion flux in case of non detections. Results. No companion is found around Fomalhaut, tau Cet and Regulus. The median upper limits at 3 sigma on the companion flux ratio are respectively of 2.3e-3 (in 4 h), 3.5e-3 (in 3 h) and 5.4e-3 (in 1.5 h) on the search region extending from 5 to 100 mas. Our observations confirm that the previously detected near-infrared excess emissions around Fomalhaut and tau Cet are not related to a low-mass companion, and instead come from an extended source such as an exozodiacal disk. In the case of del Aqr, in 30 min of observation, we obtain the first direct detection of a previously known companion, at an angular distance of about 40 mas and with a flux ratio of 2.05e-2 \pm 0.16e-2. Due to the limited u,v plane coverage, its position can, however, not be unambiguously determined. Conclusions. After only a few months of operation, PIONIER has already achieved one of the best dynamic ranges world-wide for multi-aperture interferometers. A dynamic range up to about 1:500 is demonstrated, but significant improvements are still required to reach the ultimate goal of directly detecting hot giant extrasolar planets.Comment: 11 pages, 6 figures, accepted for publication in A&
    corecore